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In genetic studies of autoimmune and inflammatory diseases,

one clear finding that has emerged from genome-wide

association studies is that a substantial fraction of variation

modifying risk in one disease also contributes mediate risk to

multiple, additional autoimmune and inflammatory diseases. The

unexpected magnitude of this overlap presents the unique

opportunity to dissect the pathogenic mechanisms underlying

multiple disease states in the expectation that this may lead to

both more sensitive diagnostics and novel therapies. Here, we

review the current evidence for this shared genetic architecture

and, based on these data, outline models for shared pathways,

the underlying hypotheses for them, how these models can be

tested and validated.
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Introduction
Epidemiologic observation data for autoimmune and
inflammatory diseases (AID) have long supported the
hypothesis that AID share an underlying genetic basis

in common. First, AID have been observed to cluster in
families [1,2] and second, they co-occur in the same
individuals at a rate higher than expected by chance

[3�]. An obvious component of this co-occurrence is owing
to the influence of shared HLA haplotypes; because
variation at this locus cannot explain all of familial risk,

other genetic determinants must also be shared in com-
plex patterns of overlap [4]. However, these data have not
completely explained the underlying shared biological

basis of disease; the recent large-scale identification of
genetic AID risk variants promises to change this.

Over the past five years, the genetics of AID have signifi-
cantly advanced, with association at convincing levels of
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statistical significance [5] at over 200 common or rare
variants [6]. These discoveries have been driven largely

by genome-wide association studies (GWAS), whose aim is
to test association between common genetic variation at
hundreds of thousands of markers and a disease endpoint;

in these studies, thousands of individuals are typically
characterized [7]. Across the spectrum of AID, application
of a range of informatics algorithms has generated plausible

hypotheses about the causal genes and tissues underlying
disease pathogenesis, motivating functional experiments
designed to test these hypotheses [8�,9,10].

One clear observation is that a large fraction of associations
at genome-wide levels of significance in one AID also relate

to additional AID [11��]. While some shared biology might
have been expected [3], the magnitude (>40% of loci) and
precision of commonality was not. Several interesting and

compelling observations have emerged implicating several
genes with shared etiology: beyond the well-described
examples at the MHC [12] and PTPN22 (see below) loci,

associations near STAT3 (discussed below) and SH2B3
[13–22], amongst others appear to harbor shared risk var-
iants. The latter is particularly intriguing as it is thought to

be a T cell receptor adaptor (if indeed it is the relevant gene
in the region), there are associations to many traits beyond
immune disease such as coronary artery disease and blood

pressure measurements and there is strong evidence of
positive selection in the region [23].

A credible hypothesis that follows from the genetic data is
that etiological mechanisms and pathways contributing

susceptibility to multiple AID are shared among them.
To address the critical aim of identifying pathways that
are either shared across diseases or are unique to specific

ones, it is essential to develop network models for com-
monalities, and consider how genetic association data
might be used to distinguish between such models.

Here, we first review the evidence for a shared genetic
architecture for AID, outline models for shared pathways,

the underlying hypotheses for them, how such models can
be generated and validated, and the implication for our
understanding of disease pathogenesis.

Genetic studies of AID highlight common
pathways underlying disease
GWA studies have been very successful in defining
genomic regions harboring disease risk alleles. Studies

in cohorts comprising tens of thousands of cases with
epidemiologically matched controls have identified
associations to common genetic markers across the entire
www.sciencedirect.com
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human genome, which satisfy stringent statistical criteria

and have been replicated across multiple cohorts. This
now includes >420 associations to >35 common, complex
autoimmune or inflammatory diseases or quantitative

measures related to immune function [6]. A biological
interpretation and hypothesis generation is only now
beginning (see accompanying reviews by Graham;

Xavier; and Gregersen and Plenge in this issue).

As more associations have been reported, a substantial
overlap between AID has emerged [22], with indepen-
dent studies in individual diseases finding associations to

the same genomic regions (for example, the region encod-
ing TNFAIP3 on human chromosome 6 [24–26]). This
has motivated several meta-analyses across pairs of dis-

eases to establish their shared genetic basis: for example,
celiac disease has been compared to rheumatoid arthritis
[27], type 1 diabetes [28] and Crohn’s disease [29] and in

each case substantial locus overlap has been observed
suggesting shared underlying pathogenesis. These obser-
vations very probably underestimate the actual extent of

commonality, as individual studies lack statistical power
to detect all true associations at genome-wide signifi-
cance: Stahl et al. [30�] estimate that in several diseases

where GWAS has been successful hundreds of further
associations remain to be found. This problem com-
pounds when considering independent discoveries across

diseases, as power is multiplicative across studies. This
means that, if an association is true in two diseases, the
power to find it in both is the product of the power of each

individual study. Therefore, estimates of the true extent
of genetic sharing are probably underestimated by either
simple overlaps or pairwise meta-analyses.

One common goal in genetic mapping studies is to
identify the causal variant(s) and haplotypes driving
genetic susceptibility in each region of association. The

most associated marker in a locus may simply be tightly
linked to an unassayed, causal variant, so maximal associ-
ation is insufficient evidence of causality for variants.

Another goal is to identify the causal gene implicated
in disease pathogenesis: regions found to associate with
traits often harbor multiple genes, requiring refinement

before inferences on genetic mechanisms and etiological
causes of disease can be made [31]. To accomplish both
goals, the AID community has developed shared

resources, including the Immunochip, a common platform
for fine-mapping AID-associated loci [32,33] as well as
computational approaches to select the likeliest candidate

genes from regions of association [34,35��,36��].

To circumvent this limitation, we developed a statistical
approach to detect such simultaneous associations [11��].
Using GWAS data contributed by consortia studying
celiac disease, Crohn’s disease, multiple sclerosis, rheuma-
toid arthritis, systemic lupus erythematosus and type 1

diabetes, we have shown that 47 of 107 markers (44%)
known to be associated to one AID are enriched for
www.sciencedirect.com 
association to multiple – but not all seven – diseases.

Grouping these loci by which diseases they mediate risk
to revealed significant structure: groups of loci appear to
influence susceptibility to the same subsets of diseases.

Furthermore, the genes in these loci encode proteins which
interact more often than expected by chance [8�] generat-
ing the hypothesis that risk variants perturb biological

processes which mediate risk to several diseases.

Three obstacles hamper inferring pathogenic mechan-
isms shared across diseases from GWAS data. First, as

discussed above, the level of precision in genetic map-
ping, in many cases, has not yet unambiguously identified
causal variants. Thus, it is challenging to distinguish

between genetic effects genuinely shared between dis-
eases and independent risk variants residing in the same
region of the genome. We illustrate this in Figure 1,

where we present the strongest associations for multiple
diseases to the locus on 6q23 encoding the candidate gene
TNFAIP3. To resolve this first issue, the AID community

is freely exchanging genetic data across disease areas,
which now allows the development of new statistical
approaches to resolve this ambiguity.

Second, increasingly precise functional maps of immune
cell subsets are required. The maps will provide a resource
by which the genes to pathways mapping can be inferred,

and in which specific cells susceptibility to disease is
determined. Genomic technologies are particularly attrac-
tive for such maps as they are amenable to automation,

throughput and industrial process standards. The limiting
factor is the careful acquisition of samples: rigorous stan-
dards in statistical experimental design, cell isolation, flow

sorting and sample preparation are required to avoid the
limitations which have hampered previous such efforts.
Such experiments in highly parallel gene expression have

begun, with several large-scale projects aiming to charac-
terize lymphocyte populations currently underway (for
example, GTEx [commonfund.nih.gov/GTEx/Publica-

tions.aspx] and ImmVar [www.immvar.org]). Other
measurements (DNse I hypersensitivity [37], nucleotide
methylation status by sequencing [38], chromatin immu-

noprecipitation and sequencing [39] and many others) are
equally valuable and capture different types of information.
With gene expression, for example, one can assess whether

disease risk variants alter gene expression suggesting a
mechanism of action [40�]. Similar inferences can be made
from other technologies. Far more exciting is the prospect

of using these data in bulk to infer gene regulatory programs
for groups of risk variants that may cumulatively perturb
pathways, a topic of much current research interest.

The third issue is one of interpretation: several risk alleles

appear to impart risk to some diseases but are protective of
others [41��,42] and it remains unclear how this evidence
should be incorporated into a pathway view of disease. A

well-known example in the literature is the R620W variant
in PTPN22, known to confer risk to T1D [43] and the
Current Opinion in Immunology 2012, 24:552–557
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Figure 1
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Multiple disease associations at 6q23 do not clearly identify shared genetic effects. We show the location and magnitude of reported associations for

RA [26], celiac disease [52], SLE [24], psoriasis [25] and multiple sclerosis [53]. It is impossible to infer shared vs. distinct associations from these data:

the variants associated to RA, SLE and psoriasis in the TNFAIP3 (also known as A20) coding region itself may point to a shared effect, as may the RA

and celiac associations in the center of the region. Whether these two blocks are distinct is also unclear. These ambiguities – common to many loci –

can only be resolved by global analysis of all diseases.
development of autoantibodies [20], RA [44] and vitiligo
[45], but to be protective for Crohn’s disease [46]. Another

emerging example is the rs744166 polymorphism in an
intron of STAT3 on chromosome 17, where the A allele
confers risk to Crohn’s disease [46] and the G allele to

multiple sclerosis [47]. It isatpresent unclear whether this is
a feature specific to inflammatory boweldisease. We discuss
somepossible explanations for these opposingriskeffects in

the following section. However, we can begin to outline
shared pathway architecture from extant information.
Under the assumption that, in each disease, causal variants

perturb a limited number of cellular processes, pathway
enrichment analysis [48,49] and functional genomics data-
sets can be queried to reveal pathway components that are

preferentially encoded in associated loci. These approaches
have shown that this cumulative burden hypothesis is true
[36��], which argues that susceptibility alleles accumulate

and perturb pathways to influence susceptibility (see Cot-
sapas and Hafler [50] for more discussion on this point).
These approaches can be expanded to incorporate genetic

data frommultiple diseases in muchthe samefashion[11��].
We next discuss various models of how risk variants may
congregate in shared pathways. These have implications

not only for the development of methods to detect such
architectures, but also the design of experiments to uncover
the precise biological activities being perturbed.
Current Opinion in Immunology 2012, 24:552–557 
Models for common AID pathways
Given the cumulative burden hypothesis, we consider
models for how common pathways might be organized
biologically. This is crucial because patterns of association

in human genetic data across diseases could be used
directly to evaluate which models (if any) apply, and
the biological contexts in which they operate in practice.

This will be required to devise precise, functional exper-
iments aiming to uncover the biological processes and
mechanisms that contribute to one or multiple AID.

Figure 2 depicts several models for how the underlying

shared (and distinct) networks could be organized. Both
shared and disease-specific mechanisms are represented
by sets of interacting genes (circles connected by lines

of interactions in Figure 2), perturbed by risk variants.
The simplest arrangement is that a network is either
private to a single disease or common to more than one.

In this model, genetic variants perturbing a private
network will only modify risk to one disease; those
perturbing a shared network will associate to all those

diseases (Figure 2a). At least some AID networks
appear to have this discrete structure [11��]: the
IL23R signaling network appears to mediate risk to

multiple diseases in this fashion, although this has
yet to be conclusively shown [51].
www.sciencedirect.com
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Figure 2
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Models of shared pathway architecture. Consider two simple networks (orange and green), represented by spherical genes connected by lines if they

interact in the network. A risk variant may perturb a gene to alter risk to one of two diseases (red or black bolt) or both (red and black double bolt).

(a) The orange network is completely shared, with variants predisposing to both diseases affecting all genes. The functional consequences of perturbation

should be similar for both diseases. (b) The network mediates risk to both diseases, but risk variants from each disease affect genes without

detectable pattern. It is not clear how perturbations result in shared risk or whether the cellular context is the same across diseases. (c, d) Subsets of

the network are disease specific and feed into a common core, which is itself either perturbed by shared risk variants or is not targeted by risk at all.
Alternative arrangements are where a shared pathway is
modified by risk variants for multiple diseases essentially

at random (Figure 2b) or where a modular architecture
connects disease-specific pathways to a shared hub
(Figure 2c,d). In the first view, any variant may predispose

to one or more diseases, but the cumulative load on the
pathway influences multiple outcomes. In the others,
disease-specific variants act on peripheral modules of

the pathway to further elevate risk to that disease, but
not to others. In this configuration, it is possible that each
of these modules are active in different cells or respond to

different stimuli, but the higher-order structure is
required for pathogenesis. This poses great challenges
for experimentation and will possibly require develop-

ment of new, systems-level immunological approaches to
decipher correctly.

A consideration of susceptibility and protective effects
across diseases as discussed above can neatly operate in

the above framework. Biologically, there is no requirement
that pathways contributing susceptibility to multiple dis-
eases do so in the same place at the same time. For

example, higher expression of an important gene in one
tissue could contribute susceptibility for one disease, but
this increase in expression protects for another in a differ-

ent tissue. This may be mediated either by the same
www.sciencedirect.com 
pathways in both tissues, or by different ones if the gene
participates in multiple processes. Contextualizing these

observations will be particularly important to address
experimentally for opposite effect variants and the genes
they act on. In reality, we expect multiple pathways and

networks to contribute to pathogenesis and no particular
model to dominate. Delineating the structure of biological
networks contributing shared and distinct liability to AID

provides one opportunity by which the key cellular com-
ponents and mechanisms implicated in disease can be
identified. After those processes are identified, this

approach will also help to target the most tractable to take
forward for functional experimentation in order to verify
the underpinnings that contribute to AID susceptibility.

Conclusion
Has the investment in AID GWAS been a good one? We

answer unambiguously in the affirmative: the landscape
of spectacular shared genetic liability across multiple AID
could not have been expected based on previous genetic,

epidemiological, or clinical information. Because of this
unexpectedly clear observation supporting shared mech-
anisms contributing to disease, and because of the acces-

sibility of many relevant cellular models, immune-
mediated traits are uniquely poised to uncover numerous
biological and mechanistic insights. Furthermore, if the
Current Opinion in Immunology 2012, 24:552–557
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biological underpinnings are in fact shared, discoveries in

one model or system have the potential to translate quickly
into others, thereby exponentially increasing the pace of
discovery. We believe that the systematic dissection of

multiple trait associations using genetic, genomic and
immunological tools will result in rapid translation of
discoveries from GWAS into biologically actionable infor-

mation for functional studies and therapeutic efforts.
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